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1. The critical Richardson number issue

The Mellor–Yamada (MY) models (Mellor and Ya-
mada 1982, hereafter MY82) underestimated the correct
value of the critical Richardson number Ric above which
turbulence becomes inoperative. Specifically,

MY82: Ri 5 0.2,c (1a)

while,

Data: Ri 5 O(1).c (1b)

Hassid and Galperin (2004, hereafter HG) call the MY
value (1a) ‘‘somewhat low’’ while most people would
consider a factor of 5 discrepancy serious. The discrep-
ancy between (1a) and (1b) is also surprising if one
considers that 13 years before MY82, Woods (1969)
presented a lucid argument to conclude that

Ri 5 O(1).c (1c)

Woods made a clear distinction between the transition
from laminar to turbulent flow at Ric 5 1/4 and the
reverse transition, from turbulent to laminar flow (of
interest here) that occurs at Ric ; 1. Woods’ conclusion
(see his Fig. 3) reads ‘‘since the final thickness of the
unstable layer is nearly four times the value prior to the
instability,’’ so is the corresponding value of Ric, namely
(1c).

Three years after MY82, Martin (1985) showed that
MY82 predicted too shallow ocean mixed layers, and
that, in order to reproduce the measured values, Ric had
to be pushed to Ric ; 1, in agreement with Woods’
result (1c). Thus, before and after MY82, theoretical
and empirical evidence was available that a reliable mix-
ing model had better produce (1b,c). Cheng et al. (2002,
hereafter CCH) solved the MY82 400% discrepancy and
obtained

Ri 5 O(1),c (1d)

and yet HG write that CCH ‘‘is not necessarily superior
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to’’ MY. We leave it to the reader to judge. In addition,
HG make no mention of the fact that the low value of
Ric prompted several people to abandon the MY82-like
models in favor of other models that yield (1b) rather
than (1a). Large et al. (1994) suggested a new mixing
model, the KPP model, whose principal motivation was
the fact that MY82 underestimated the ocean mixed
layer depth. Thus, either one amended the MY82 model
to recover (1b), as CCH did, or, as Large et al. did, one
devised a new model not based on turbulence closure
but that also satisfies (1b). Had the experts of the MY82
model heeded the warning of those who spotted the
shortcoming of MY82 on the predicted Ric and corrected
it, an improved MY82 would be widely used today.

CCH succeeded in reproducing (1b) within the gen-
eral framework first employed by MY but HG now sug-
gest to undo the success of CCH and bring the MY-
type model back to a value of Ric less than unity, against
all evidence accumulated over the years. As we now
show, HG’s suggestion is based on several errors.

2. The length scale issue

It is imperative to clarify a key point that was mis-
interpreted by HG: in CCH, no length scale of any type
was needed to derive the value of Ric. In fact, no length
scale enters in the solution of the P 5 e equation, which
entails only the variable t, not e nor e separately, but
only their ratio t 5 2e/e, as Eq. (23b) of CCH explicitly
shows, where only Gm [ (tS)2 enters versus Ri.

The solution of P 5 e is therefore the function

tS 5 f (Ri). (1e)

Figures 1–8 of CCH do not require and thus did not
employ any length scale. As we explicitly state in sec-
tion 7, point 2 below, a specific expression for a length
scale, Eq. (5e) of CCH, enters only in the construction
of Figs. 9–11 of CCH. To clarify the issue let us use
the general expression for Ka (where the subscript a
stands for momentum and heat):

2 21K 5 c, t S ,a a (1f )
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FIG. 1. Plot of vs Ri (solid line) as from the HG suggestion,21F h

scheme 1 in section 2, as compared with the LES data (crosses) of
Kosovic and Currey (2002).

FIG. 2. The same as Fig. 1, but with the new scheme 2 discussed
in section 2.

where 2c [ and e 5 (2e)3/2/B1,. There are three2B1

schemes to treat the variables t and ,.

1) HG suggest that t(Ri) be obtained from P 5 e mod-
ified as per Eq. (1i) below. Furthermore, , is from
Deardorff Eq. (5e) of CCH. The results for are21F h

shown in Fig. 1 in order to show that it terminates
quite abruptly at about Ric 5 0.5 while the large
eddy simulation (LES) data are seen to extend much
further. Clearly, the GH suggestion leads to a dis-
continuous , a behavior that we deem unphysical.21F h

Note that this is the same as Fig. 10 of CCH, ex-
tended in the Ri axis to exhibit the abrupt behavior
of the model .21F h

2) We put forward a new proposal: t(Ri) is from P 5
e unchanged, but , is treated as follows. Equation
(5e) of CCH is implemented as follows:

, 5 min(, , 0.53q /N).1 1 (1g)

Here, q1 5 B1,1/t, where ,1 is the length scale with-
out the effect of stratification. This new procedure
modifies both , and q but not their ratio t:

q 5 q ,/, 5 B ,/t.1 1 1 (1h)

This argument is hinted by Deardorff’s original work
(Deardorff 1976), which we understand as actually
intending to limit, in his own words, the ‘‘mixing
length’’ but not t.
The new results for are exhibited in Fig. 2.21F h

Several points must be noted. Up to Ri ; 0.5, the
result does not differ significantly from that in Fig.

1. However, the sudden discontinuity in Fig. 1 is no
longer present since the model now allows Ric to be
of order unity. Thus, two advantages ensue: the
maintenance of the Ric ; 1, as we have already
discussed and a more physical overall behavior of
Fh.

3) As CCH suggested, t(Ri) is obtained from P 5 e
(unchanged), while , is from the Cheng and Canuto
(1994) two-point closure model. The model is able
to recover Deardorff (1980) and Hunt et al. (1988)
models for , as particular cases. This t–, scheme
has not yet been implemented.

In summary, the HG scheme leads to a discontinuous
result, Fig. 1, while our scheme does not, Fig. 2.

3. Hassid–Galperin’s key argument

Hassid and Galperin’s (2004) main contention is that,
in deriving Eq. (1d), CCH did not take into account two
limitations on Gh [ (tN)2 and Gm [ (tS)2:

G , G (max), G , G (max),h h m m (1i)

which would change (1d) into

Ri 5 0.52.c (1j)

We show that the first limitation in (1i) is due to HG’s
misreading of the physical basis of the Deardorff’s lim-
itation and that the second limitation in (1i) was ex-
plicitly shown to be satisfied by the CCH model.
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4. Use of Deardorff limitation

We begin with the relation

Production 5 dissipation, P 5 e. (2a)

Since both shear and buoyancy contribute to P, we write

P 5 P 1 P .s b (2b)

With
2 2P 5 K S , P 5 2K N , and (2c)S m b h

2 21K 5 2e e S , (2d)m,h m,h

where Sm,h are dimensionless structure functions, Eq.
(2a) becomes the relation (t 5 2e/e):

t 5 t(Ri). (2e)

On physical grounds, one expects that when Ri →
Ric and turbulence subsides, Eq. (2e) yields a very large
lifetime since turbulence is weak and the nonlinear in-
teractions no longer break up the large structures, which
become (stable) linear structures, that is, with very large
lifetimes. That is exactly what Eq. (2e) gives.

Notwithstanding this point, HG suggest that the so-
lutions (2e) ought to be limited by the relation

t , t(max), G , G (max),h h (3a)

which they derive invoking the Deardorff’s limitation:
in a stably stratified medium, the length scale , de-
creases with N and the maximum ,max is given by

1/2 21, , , 5 ce N , c 5 0.76.max (3b)

This translates into the limitation
2G [ (tN) , 100,h (3c)

which ultimately gives

Ri 5 0.52.c (3d)

Since (3d) is manifestly at odds with a host of measured
data, one has ample reason to doubt the reliability of
(3a). Specifically, we show that (3a) goes against the
following facts.

1) Equation (3b) is Eq. (1.6a) of Deardorff (1976), but
HG overlooked a critical fact. The constant c in (3b)
is not a universal constant. It depends on Ri itself.
In fact, the specific value c 5 0.76 was chosen by
Deardorff to obtain a value of Ric 5 0.2; that is,

c 5 0.76 only for Ri 5 0.2.c (4a)

A different value of Ric yields another c. Since Dear-
dorff did not give the function c(Ri), but only one
value of it, HG have arbitrarily assumed that c is
independent of Ri.
The fact that

c 5 c(Ri) (4b)

has indeed been recently shown (Canuto et al. 2004,

manuscript submitted to J. Atmos. Sci., hereafter
CCH2).

2) Hassid and Galperin overlooked an additional critical
fact. Deardorff himself realized that the decrease of
, with N implied by (3b) was at odds with some
LES data he obtained two years earlier (Deardorff
1974, Fig. 19), which showed that , increases with
N.

3) An increase of , with N (rather than a decrease) was
later confirmed by several authors (Moeng and Wyn-
gaard 1989; Schmidt and Schumann 1989; Moeng
and Sullivan 1994).

4) On these grounds, Schumann concluded that ‘‘the
increase of , contradicts the expectation which form
the basis of Deardorff’s (1976) proposal.’’

5) The question of whether in a stably stratified medium
, increases or decreases with N is related to the pres-
ence or not of external sources such as shear (Canuto
and Minotti 1993; Cheng and Canuto 1994; Canuto
and Cheng 1997; CCH2). In the first case, , de-
creases with N while in the second case, , increases
with N. As an example of , increasing with N comes
from the Dickey–Mellor (1980, hereafter DM) ex-
periment of freely decaying turbulence in a stably
stratified medium.

6) The conclusion is strengthened by LES results by
Schumann (1990, 1991) who found that , ‘‘decreases
with increasing importance of shear.’’ The corollary
is that , will eventually increase when shear becomes
negligible.

Even without considering a P 5 e model, in the pres-
ence of sources (e.g., shear) and sinks (e.g., stable strat-
ification), one has that

strong sources ⇒ Ri small, (5a)

weak sources ⇒ Ri large. (5b)

Relations (5a) and (5b) suggest relations of the form:

2a bSmall Ri: , ; N , Large Ri: , ; N , (5c)

where (a, b) are two positive constants. What must be
realized and implemented is that when the sources of
turbulence vanish (for example near the top of the PBL),
, begins to increase with N, and Deardorff’s requirement
that , decreases with N no longer applies. This has as
yet unexplored consequences on the value of Ric and
thus on the height of the Planetary boundary layer (PBL)
and/or the depth of the ocean mixed layer.

5. The limitation on Gm

Hassid and Galperin (2004) assert that CCH did not
take into account the limitation imposed on Ric by Gm

(max) defined in Eq. (21c) of CCH or Eq. (4) of HG.
This is factually incorrect. First, CCH stated very clearly
after Eq. (23) that ‘‘It is important to check the consis-
tency of (21c) with (23b).’’ Second, in Figs. 1 and 2,
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CCH plotted Gm and Gm (max) versus Ri to show that
in the CCH model

G , G (max)m m (6)

for all Ri. Hassid and Galperin should have concluded
that this is another advantage of the CCH model since
it automatically satisfies the Gm(max) criterion (6) they
proposed in 1983 (Hassid and Galperin 1983).

6. Concerning 2 and 2y w

Mellor (1973) pointed out that 2 5 2 [his Eqs.y w
(35b) and (35c)] may be related to the parameterization
of the pressure correlation [his Eq. (10)] as he wrote
that ‘‘We now see that (35b,c) permits only equal values
of 2 and 2, whereas the data indicated more or lessy w
unequal values. Possibly, this is a defect in the isotropy
assumption involved in (10), but, hopefully not a serious
impediment to our ultimate goal.’’

Mellor’s insight into this problem 30 years ago is
impressive. MY82 reiterated the idea by saying that
‘‘The fact that y9 and w9 are equal is not supported by
the data’’ and ‘‘the model could be complicated to per-
mit y9 ± w9.’’ The CCH model allowed y9 ± w9 by
allowing l2 ± l3, a change that introduced a small
increase in algebraic complexity. In this regard, CCH
is a step forward along the direction foreseen by Mellor
(1973).

Besides, as stated in CCH, the nonisotropic pressure
correlations are part of state-of-the-art turbulence clo-
sures, which have been widely used in turbulence the-
ories and in engineering studies. We see no reason why
the PBL community should not embrace them.

Hassid and Galperin misquoted the CCH statement.
What was stated in CCH is that the model ‘‘offers an
alternative that will be able to, at least partially, account
for the difference between 2 and 2, without resortingy w
to adding wall terms to the pressure correlations.’’

CCH did not claim that their model could do every-
thing the complicated wall functions do, but that it is
able to represent some portion of the difference between

2 and 2. Launder et al.’s (1975) Table 1 quoted ex-y w
perimental data for the homogeneous shear flow and the
near wall flow, both of which show that 2 , 2, al-w y
though in the homogeneous flow, the difference is small-
er.

Most higher-order turbulence models, including the
MY model and the CCH model, use model ‘‘constants’’
while strictly speaking, the constants may vary with
space and time. Near the surface, the flow is more like
a boundary layer flow, and in the mid-PBL, the flow is
closer to the homogeneous flow. When the constants are
determined, some compromise is needed so that the
models can be more flexible in general conditions.

In the literature, different authors (e.g., Launder et
al. 1975; Speziale et al. 1991; Taulbee 1992) have sug-
gested different values for l2 and l3 (which determine
how much 2 differs from 2). Taulbee (1992) pointedy w

out that the values l2/l3 5 0–0.47 are also in use. In
general, the ratio is smaller than unity.

A useful improvement of the CCH model, as com-
pared with previous models, is that it provides formulas
that depend explicitly on a more complete set of l val-
ues. This not only yields Eq. (1d), but also allows l2,3

to be different, instead of arbitrarily imposing l2 5 l3,
as in many previous models. We do not claim that the
l values are carved in stone. We welcomed, for example,
the effort of Kantha (2003) to improve the constants of
the CCH model, although we stress that imposing l2 5
l3 is a setback that is obviously inconsistent with many
data (including the data in MY82) and thus should and
can be avoided.

7. About Figs. 7–8 and 9–10 of CCH

The following is to answer HG’s question as to why
MY and CCH give similar results in Figs. 7–8 but not
in Figs. 9–10. The key reason is that Figs. 7–8 refer to
the surface layer only, where Ri is small and where MY
and CCH models differ little. On the other hand, in Figs.
9–10, the full range of Ri from 0 to Ric occur and thus
the difference between MY and CCH becomes apparent.

To answer HG’s question about how Figs. 9–10 of
CCH were produced, we state the following.

1) The results presented in Figs. 9–10 are derived from
numerical simulations of the whole PBL (i.e., by
solving the dynamic equations presented in CCH,
using the CCH and MY turbulence models), as well
as from LES.

2) Figures 9–11 employ Eq. (5e) of CCH, which was
not used in any other figure of CCH.

It has been common practice for the LES authors to
plot 1/Fm and 1/Fh versus Ri all the way to the top of
the PBL. For example, in his Fig. 6 (similar to CCH
Figs. 9–10), Andren (1995) noted that ‘‘Ri-values above
0.2 correspond in the simulations to levels well above
mid-PBL height.’’ Brown et al. (1994), referring to their
Fig. 10 (similar to our Figs. 9–10), write, ‘‘We now
present data from the whole of the boundary layer. . .’’
Mason (1994) also plotted similar figures. In Kosovic
and Curry’s (2000) LES data, at z/zi 5 0.58, Ri reaches
0.23. Even if one only wants to look at the mid-PBL
around Ri 5 0.2, the CCH model is still much better
than the MY model. It may help to think in Ri space
with a domain (0,1). The MY82 models compress the
domain to (0,0.2) and not surprisingly, the functions
Fm,h get distorted.

Hassid and Galperin (2004) write that: ‘‘. . . in order
to obtain reasonable results for stable stratification, CCH
have to use Nakanishi’s length scale. . .’’ Actually, we
tried both cases. Without Nakanishi’s length scale, the
match to the data for stable stratification is not as good,
but still reasonable, especially if one considers that the
original Kansas data are scattered in the stable region.
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Nakanishi’s (2001) new length scale is obtained from
LES data and probably there is a point to using it.

In any case, Fig. 7 of CCH significantly improves
MY82 for Fm in the unstable region.

8. About the structural symmetry

The statement by HG that the structural symmetry
exhibited by the solutions of CCH was not in the original
equations misses our point. Two examples will suffice
to make this clear. Newton’s equations do not exhibit
elliptical orbits as their solutions do! Dirac’s equations
for the relativistic electron does not exhibit the sym-
metry between matter and antimatter that only results
from solving those equations. Neither is it visible in
those equations that the electron has a spin, as the so-
lutions show. And so on and so forth. In conclusion,
there is a good reason why people solve equations, the
results exhibit much more information and/or symmetry
than the original equations.

9. Conclusions

Concerning HG’s concluding remarks, CCH recog-
nized and acknowledged the success of MY’s pioneering
work (see introduction of CCH paper). It was also MY
themselves who first pointed out some of the model
deficiencies, for example, the 2 versus 2 issue. CCHy w
tried to improve the modeling pioneered by MY (thus
the title of the CCH paper). Hassid and Galperin’s com-
placency about the classical MY82 model contrasts
MY’s caveats decades ago.

Hassid and Galperin (2004) assert that the CCH mod-
el tunes second-moment closure models to specific
flows. The opposite is true. For example, the models
that impose l2 5 l3 actually tune the closure to the
homogeneous case and result in 2 5 2, which isy w
inconsistent with the data, as first noticed by Mellor
(1973). On the other hand, CCH model employs state-
of-the-art turbulence closure that permits 2 ± 2y w
(among other things), and thus is more general.

In summary, the CCH model yields order unity Ric,
as demanded by a host of data, while the HG scheme
fails to do so.
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